

Fuel Cell Operation at Sub-Freezing Temperatures

DOE Program/Targets and Workshop Objectives

Nancy Garland
DOE Hydrogen Program

Sub-Freezing Temperature
Effects on Fuel Cells
Workshop
Phoenix AZ
February 1-2, 2005

Outline

- Hydrogen Fuel Initiative
- The Hydrogen, Fuel Cells, and Infrastructure Technologies Program
- Technical Targets
- DOE Fuel Cell & Hydrogen Activities
- Workshop Objectives

Hydrogen Fuel Initiative

- Presidential Initiative commits \$1.7 Billion over 5 years
 - \$1.2 Billion for hydrogen and fuel cells Million in new money)
 - \$0.5 Billion for hybrid and vehicle technologies
- Enables commercialization decision by 2015
- Fuel cell vehicles in showroom and hydrogen at fuel stations by 2020

Hydrogen, Fuel Cells and Infrastructure Technologies Program

- The program's mission is to research, develop, and validate fuel cell and hydrogen production, delivery, and storage technologies for transportation and stationary applications.
- The program aims to have hydrogen from diverse domestic resources used in a clean, safe, reliable, and affordable manner in fuel cell vehicles, centralized power stations, and distributed combined heat and power applications.

DOE Hydrogen Program Budget

MAJOR LINE ITEMS	FY 04 Appropriations (\$000)	FY 05 Request (\$000)	FY 05 Appropriations* (\$000)
Production & Delivery R&D (EE)	\$22,564	\$25,325	\$14,363
Storage R&D (EE)	\$29,432	\$30,000	\$23,830
Safety, Codes & Standards, and Utilization (EE)	d Utilization \$5,904 \$18,000		\$6,061
Infrastructure Validation (EE)	\$18,379	\$15,000	\$9,573
Systems Analysis (EE)	\$5,712	\$7,000	\$3,444
Earmarks (EE)			\$37,301
EERE Hydrogen Technology Subtotal– (EWD)	\$81,991	\$95,325	\$94,572
NE Hydrogen Subtotal – (EWD)	\$6,400	\$9,000	\$8,929
FE Hydrogen Subtotal – (Interior)	\$4,900	\$16,000	\$17,085
SC – (EWD)	\$0**	\$29,200	\$29,183
DOT			\$544
Hydrogen Technology Total	\$93,791	\$149,525	\$150,525

^{*} Subject to approval; includes \$37M of earmarked projects. Eliminates education.

^{**}Excludes \$8M of baseline activities not counted as part of initiative

DOE PEM Fuel Cell Program Budget

KEY ACTIVITY	FY 04 Appropriations (\$000)	FY 05 Request (\$000)	FY 05 Appropriations (\$000)
Transportation Systems	\$7,506	\$7,600	\$7,495
Distributed Energy Systems	\$7,408	\$7,500	\$6,902
Fuel Processor R&D	\$14,815	\$13,858	\$9,721
Stack Component R&D	\$25,186	\$30,000	\$32,541
Technology Validation	\$9,877	\$18,000	\$17,750
Technical Prog. Mgmt. Support	\$395	\$542	\$535
Fuel Cell Technology Total	\$65,187	\$77,500	\$74,944

FY 05 EERE Fuel Cell Activities

Stack Component R&D \$32,541K

• Membranes that operate at high temperature and low RH, with lower cost and improved durability and tolerance to feed gas impurities

- · Improved understanding of proton conduction and membrane degradation
 - Cost reduction using non-precious metal catalysts and ultra-low platinum loading

Fuel Processor R&D \$9,721K LPG or propane fuel processing technology for stationary applications 43% 13% 9% 24% 10%

Distributed Energy Systems \$6,902K

Fuel processor catalysts

 High efficiency PEMFC power systems as an alternative to grid-based electricity for buildings

Transportation Systems \$7,495K

- System analysis
- System sensors
- Compact humidifiers/heat exchangers
- Auxiliary power in trucks
- Portable power applications
- Full scale compressors

Technical/Program Management Support \$535K

Program, strategic & operating plans

Technology Validation \$17,750K

- First and second generation fuel cell vehicles
- Validate performance and durability of fuel cell systems

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Staff

Steve Chalk, Program Manager
JoAnn Milliken – Chief Engineer
Fred Joseck – Technology Analyst
Lindsay Roland (On detail) – Policy/Int'l Support

Technology Validation Manager - Sigmund Gronich
Education - Christy Cooper
Safety, Codes/Standards - Patrick Davis
Safety Engineer - Antonio Ruiz

Hydrogen Production Team

Pete Devlin, Team Leader
Arlene Anderson
Chris Bordeaux
(detailed to IP)
Roxanne Danz
Matt Kaufffman
Mark Paster

Hydrogen Storage Team

Sunita Satyapal,

Team Leader

Tony Bouza

John Petrovic (LANL)

Carole Read

Fuel Cell Team

Valri Lightner,
Team Leader
Kathi Epping
John Garbak
Nancy Garland
Donna Ho
Amy Manheim

Technical Targets: 80-kW_e (net) Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

Characteristics	Units	2004 Status	2005	2010	2015
Energy efficiency @ 25% rated power	%	59	60	60	60
Energy efficiency @ rated power	%	50	50	50	50
Power density	W/L	450	500	650	650
Specific power	W/kg	420	500	650	650
Cost	\$/kW _e	120	125	45	30
Transient response (time from 10% to 90% rated power)	S	<1.5	2	1	1
Durability	hours	~1000	2000	5000	5000
Cold start-up time to 90% rated power					
@ -20°C ambient temperature	S	120	60	30	30
@+20°C ambient temperature	S	60	30	15	15
Survivability	°C	-20	-30	-40	-40

2004 Programmatic Highlights

Financial Assistance Awards: over \$425 million (\$675 with cost share)

- Hydrogen production and delivery technologies
- Hydrogen storage "Centers of Excellence" and materials development
- Demonstrate and validate fuel cell vehicle and infrastructure technologies under real-world conditions
- Fuel cells for consumer electronics and other applications

Research, Development and Demonstration Plan:

- NRC recommendations
- New systems analysis and system integration functions

On-board Fuel Processing R&D Go/No-Go Decision:

- Technical evaluation of status, progress, and potential
- Independent review panel recommended R&D discontinued

Workshops:

- Hydrogen Production (4): hydrogen separations and purification, water electrolysis by utilities, renewable electrolysis, and hydrogen production via direct fermentation
- Codes & Standards: understand and organize fuel purity codes & standards efforts
- Systems Analysis: identify and better coordinate systems analysis efforts

IPHE: scoping papers approved; joint projects to kick-off in '05

IATF (through OSTP): new web site - www.hydrogen.gov

Workshop on Fuel Cell Operation at Sub-Freezing Temperatures

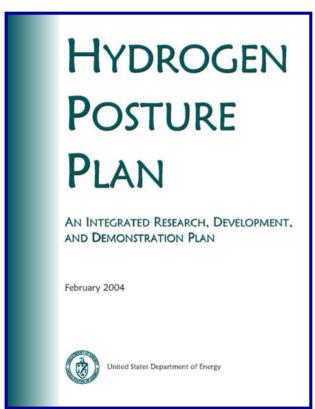
- Transportation (and stationary) fuel cells need to operate in environments where ambient temperatures will fall below 0°C. Surprisingly little data exist to quantify the effects of sub-freezing temperatures on fuel cell operations.
- The goal of this workshop is to identify and prioritize the technical barriers associated with freezing or sub-freezing temperatures and to develop an RD&D plan to overcome these barriers.
- Results of this workshop will most likely be a topic in an FY
 2006 solicitation to be released by the DOE's OHFCIT.

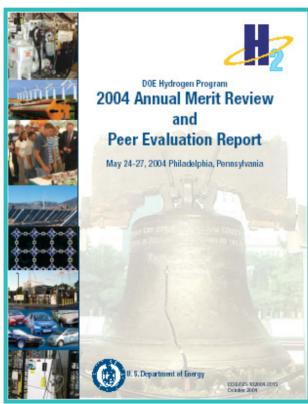
Key Points

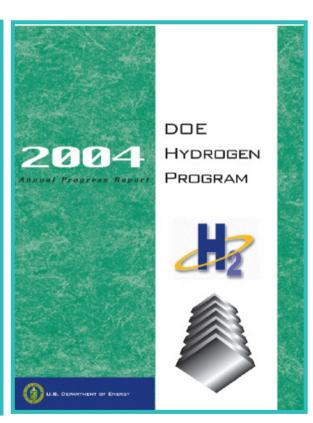
The focus of this workshop is prediction of the likely effects of freezing temperatures on fuel cell operation and identification of technology tasks to mitigate these effects.

This is a working meeting - not an information meeting. We ask that everybody open up and contribute.

System level targets must be considered.


Thanks!!!


Workshop Organizing Committee


- Bryan Pivovar (LANL)
- Larry Blair (consultant to DOE)
- Doug Wheeler (consultant to NREL)
- Keith Wipke (NREL)

For More Information

www.eere.energy.gov/hydrogenandfuelcells

Agenda

Tuesday, February 1, 2005

8:30	Welcome Workshop Expectations Nancy Garland, DOE	
8:45	Glenn Skala, General Motors	
9:10	Jeremy Meyers, UTC Fuel Cells	
9:35	Ballard Contribution presented by Larry Blair, DOE consultant	
9:55	Richard Gaylord, Plug Power	
10:15	Break	
10:30	Tom Zawodzinski, CWRU	
10:50	Phil Ross, LBNL	
11:10	Bryan Pivovar, LANL	
11:30	Rajesh Ahluwalia, ANL	
11:50 L	_unch	
12:45 Open Discussion Moderated by Doug Wheeler (NREL consultant)		

1:45	Breakout Group Assignments and instructions – Shawna McQueen, Energetics
2:00	Breakout Groups (Effects)
3:00	Break
3:20	Breakout Groups (Challlenges)
4:30	Reconvene/Discuss break out group findings
Wed	nesday, February 2, 2005
8:00	Breakout Groups (Research Directions)
10:00	Break
10:15	Breakout Groups (Top 10 Analysis)

11:15 Reconvene/ Wrap-up/ Next Steps

12:15 Adjourn